Δεύτερη παράγωγος της $$$\sqrt{x}$$$

Ο υπολογιστής θα βρει τη δεύτερη παράγωγο της $$$\sqrt{x}$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής Παραγώγου, Υπολογιστής λογαριθμικής παραγώγισης

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d^{2}}{dx^{2}} \left(\sqrt{x}\right)$$$.

Λύση

Βρείτε την πρώτη παράγωγο $$$\frac{d}{dx} \left(\sqrt{x}\right)$$$

Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = \frac{1}{2}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} = {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}$$

Άρα, $$$\frac{d}{dx} \left(\sqrt{x}\right) = \frac{1}{2 \sqrt{x}}$$$.

Στη συνέχεια, $$$\frac{d^{2}}{dx^{2}} \left(\sqrt{x}\right) = \frac{d}{dx} \left(\frac{1}{2 \sqrt{x}}\right)$$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = \frac{1}{2}$$$ και $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{2 \sqrt{x}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)}{2}\right)}$$

Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = - \frac{1}{2}$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)\right)}}{2} = \frac{{\color{red}\left(- \frac{1}{2 x^{\frac{3}{2}}}\right)}}{2}$$

Άρα, $$$\frac{d}{dx} \left(\frac{1}{2 \sqrt{x}}\right) = - \frac{1}{4 x^{\frac{3}{2}}}$$$.

Επομένως, $$$\frac{d^{2}}{dx^{2}} \left(\sqrt{x}\right) = - \frac{1}{4 x^{\frac{3}{2}}}$$$.

Απάντηση

$$$\frac{d^{2}}{dx^{2}} \left(\sqrt{x}\right) = - \frac{1}{4 x^{\frac{3}{2}}}$$$A


Please try a new game Rotatly