Integralen av $$$e^{\frac{x^{2}}{8}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$e^{\frac{x^{2}}{8}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int e^{\frac{x^{2}}{8}}\, dx$$$.

Lösning

Låt $$$u=\frac{\sqrt{2} x}{4}$$$ vara.

$$$du=\left(\frac{\sqrt{2} x}{4}\right)^{\prime }dx = \frac{\sqrt{2}}{4} dx$$$ (stegen kan ses »), och vi har att $$$dx = 2 \sqrt{2} du$$$.

Alltså,

$${\color{red}{\int{e^{\frac{x^{2}}{8}} d x}}} = {\color{red}{\int{2 \sqrt{2} e^{u^{2}} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=2 \sqrt{2}$$$ och $$$f{\left(u \right)} = e^{u^{2}}$$$:

$${\color{red}{\int{2 \sqrt{2} e^{u^{2}} d u}}} = {\color{red}{\left(2 \sqrt{2} \int{e^{u^{2}} d u}\right)}}$$

Denna integral (Imaginära felintegralen) har ingen sluten form:

$$2 \sqrt{2} {\color{red}{\int{e^{u^{2}} d u}}} = 2 \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}$$

Kom ihåg att $$$u=\frac{\sqrt{2} x}{4}$$$:

$$\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)} = \sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\left(\frac{\sqrt{2} x}{4}\right)}} \right)}$$

Alltså,

$$\int{e^{\frac{x^{2}}{8}} d x} = \sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} x}{4} \right)}$$

Lägg till integrationskonstanten:

$$\int{e^{\frac{x^{2}}{8}} d x} = \sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} x}{4} \right)}+C$$

Svar

$$$\int e^{\frac{x^{2}}{8}}\, dx = \sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} x}{4} \right)} + C$$$A


Please try a new game Rotatly