Integrale di $$$e^{\frac{x^{2}}{8}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$e^{\frac{x^{2}}{8}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int e^{\frac{x^{2}}{8}}\, dx$$$.

Soluzione

Sia $$$u=\frac{\sqrt{2} x}{4}$$$.

Quindi $$$du=\left(\frac{\sqrt{2} x}{4}\right)^{\prime }dx = \frac{\sqrt{2}}{4} dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = 2 \sqrt{2} du$$$.

Quindi,

$${\color{red}{\int{e^{\frac{x^{2}}{8}} d x}}} = {\color{red}{\int{2 \sqrt{2} e^{u^{2}} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2 \sqrt{2}$$$ e $$$f{\left(u \right)} = e^{u^{2}}$$$:

$${\color{red}{\int{2 \sqrt{2} e^{u^{2}} d u}}} = {\color{red}{\left(2 \sqrt{2} \int{e^{u^{2}} d u}\right)}}$$

Questo integrale (Funzione di errore immaginaria) non ha una forma chiusa:

$$2 \sqrt{2} {\color{red}{\int{e^{u^{2}} d u}}} = 2 \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}$$

Ricordiamo che $$$u=\frac{\sqrt{2} x}{4}$$$:

$$\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)} = \sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\left(\frac{\sqrt{2} x}{4}\right)}} \right)}$$

Pertanto,

$$\int{e^{\frac{x^{2}}{8}} d x} = \sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} x}{4} \right)}$$

Aggiungi la costante di integrazione:

$$\int{e^{\frac{x^{2}}{8}} d x} = \sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} x}{4} \right)}+C$$

Risposta

$$$\int e^{\frac{x^{2}}{8}}\, dx = \sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} x}{4} \right)} + C$$$A


Please try a new game Rotatly