Calculadora de decomposição de valor singular

A calculadora encontrará a decomposição de valor singular (SVD) da matriz fornecida, com as etapas mostradas.

$$$\times$$$

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão / feedback, escreva nos comentários abaixo.

Sua entrada

Encontre o SVD da $$$\left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]$$$.

Solução

Encontre a transposta da matriz: $$$\left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T} = \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right]$$$ (para etapas, consulte calculadora transposta da matriz).

Multiplique a matriz com sua transposta: $$$W = \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]\cdot \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right] = \left[\begin{array}{ccc}2 & 2 & 2\\2 & 6 & 2\\2 & 2 & 2\end{array}\right]$$$ (para etapas, consulte calculadora de multiplicação de matrizes).

Agora, encontre os autovalores e autovetores de $$$W$$$ (para as etapas, consulte calculadora de autovalores e autovetores).

Autovalor: $$$8$$$, autovetor: $$$\left[\begin{array}{c}1\\2\\1\end{array}\right]$$$.

Autovalor: $$$2$$$, autovetor: $$$\left[\begin{array}{c}1\\-1\\1\end{array}\right]$$$.

Autovalor: $$$0$$$, autovetor: $$$\left[\begin{array}{c}-1\\0\\1\end{array}\right]$$$.

Encontre as raízes quadradas dos autovalores diferentes de zero ( $$$\sigma_{i}$$$ ):

$$$\sigma_{1} = 2 \sqrt{2}$$$

$$$\sigma_{2} = \sqrt{2}$$$

A $$$\Sigma$$$ é uma matriz zero com $$$\sigma_{i}$$$ em sua diagonal: $$$\Sigma = \left[\begin{array}{ccc}2 \sqrt{2} & 0 & 0\\0 & \sqrt{2} & 0\\0 & 0 & 0\end{array}\right]$$$.

As colunas da matriz $$$U$$$ são os vetores normalizados (unitários): $$$U = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{6}}{3} & - \frac{\sqrt{3}}{3} & 0\\\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\end{array}\right]$$$ (para obter as etapas para encontrar um vetor unitário, consulte calculadora de vetores unitários).

Agora, $$$v_{i} = \frac{1}{\sigma_{i}}\cdot \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T}\cdot u_{i}$$$:

$$$v_{1} = \frac{1}{\sigma_{1}}\cdot \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T}\cdot u_{1} = \frac{1}{2 \sqrt{2}}\cdot \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{6}}{6}\\\frac{\sqrt{6}}{3}\\\frac{\sqrt{6}}{6}\end{array}\right] = \left[\begin{array}{c}\frac{\sqrt{6}}{6}\\\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{6}\end{array}\right]$$$ (para etapas, consulte calculadora de multiplicação escalar de matriz e calculadora de multiplicação de matriz).

$$$v_{2} = \frac{1}{\sigma_{2}}\cdot \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T}\cdot u_{2} = \frac{1}{\sqrt{2}}\cdot \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{3}}{3}\\- \frac{\sqrt{3}}{3}\\\frac{\sqrt{3}}{3}\end{array}\right] = \left[\begin{array}{c}- \frac{\sqrt{3}}{3}\\0\\\frac{\sqrt{6}}{3}\end{array}\right]$$$ (para etapas, consulte calculadora de multiplicação escalar de matriz e calculadora de multiplicação de matriz).

Uma vez que esgotamos o $$$\sigma_{i}$$$ diferente de zero e precisamos de mais um vetor, encontre o vetor ortogonal para todos os vetores encontrados, encontrando o espaço nulo da matriz cujas linhas são os vetores encontrados: $$$\left[\begin{array}{c}\sqrt{2}\\-1\\1\end{array}\right]$$$ (para etapas, consulte calculadora de espaço nulo).

Normalize the vector: it becomes $$$\left[\begin{array}{c}\frac{\sqrt{2}}{2}\\- \frac{1}{2}\\\frac{1}{2}\end{array}\right]$$$, (for steps, see unit vector calculator).

Portanto, $$$V = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & - \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{3}}{2} & 0 & - \frac{1}{2}\\\frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{3} & \frac{1}{2}\end{array}\right].$$$

As matrizes $$$U$$$, $$$\Sigma$$$ e $$$V$$$ são tais que a $$$\left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right] = U \Sigma V^T$$$ matriz inicial.

Responder

$$$U = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{6}}{3} & - \frac{\sqrt{3}}{3} & 0\\\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\end{array}\right]\approx \left[\begin{array}{ccc}0.408248290463863 & 0.577350269189626 & -0.707106781186548\\0.816496580927726 & -0.577350269189626 & 0\\0.408248290463863 & 0.577350269189626 & 0.707106781186548\end{array}\right]$$$A

$$$\Sigma = \left[\begin{array}{ccc}2 \sqrt{2} & 0 & 0\\0 & \sqrt{2} & 0\\0 & 0 & 0\end{array}\right]\approx \left[\begin{array}{ccc}2.82842712474619 & 0 & 0\\0 & 1.414213562373095 & 0\\0 & 0 & 0\end{array}\right]$$$A

$$$V = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & - \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{3}}{2} & 0 & - \frac{1}{2}\\\frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{3} & \frac{1}{2}\end{array}\right]\approx \left[\begin{array}{ccc}0.408248290463863 & -0.577350269189626 & 0.707106781186548\\0.866025403784439 & 0 & -0.5\\0.288675134594813 & 0.816496580927726 & 0.5\end{array}\right]$$$A