Calculadora do determinante da matriz

A calculadora encontrará o determinante da matriz (2x2, 3x3, 4x4 etc.) usando a expansão do cofator, com os passos mostrados.

Calculadora relacionada: Calculadora da matriz de cofator

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão / feedback, escreva nos comentários abaixo.

Sua entrada

Calcule a $$$\left|\begin{array}{ccc}1 & 2 & 2\\0 & 5 & 7\\1 & 1 & 1\end{array}\right|$$$.

Solução

Subtraia a linha $$$1$$$ da linha $$$3$$$: $$$R_{3} = R_{3} - R_{1}$$$.

$$$\left|\begin{array}{ccc}1 & 2 & 2\\0 & 5 & 7\\1 & 1 & 1\end{array}\right| = \left|\begin{array}{ccc}1 & 2 & 2\\0 & 5 & 7\\0 & -1 & -1\end{array}\right|$$$

Expanda ao longo da coluna $$$1$$$:

$$$\left|\begin{array}{ccc}1 & 2 & 2\\0 & 5 & 7\\0 & -1 & -1\end{array}\right| = \left(1\right) \left(-1\right)^{1 + 1} \left|\begin{array}{cc}5 & 7\\-1 & -1\end{array}\right| + \left(0\right) \left(-1\right)^{2 + 1} \left|\begin{array}{cc}2 & 2\\-1 & -1\end{array}\right| + \left(0\right) \left(-1\right)^{3 + 1} \left|\begin{array}{cc}2 & 2\\5 & 7\end{array}\right| = \left|\begin{array}{cc}5 & 7\\-1 & -1\end{array}\right|$$$

O determinante de uma $$$2 \times 2$$$ é a $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}5 & 7\\-1 & -1\end{array}\right| = \left(5\right)\cdot \left(-1\right) - \left(7\right)\cdot \left(-1\right) = 2$$$

Responder

O determinante da matriz é igual a $$$2$$$A.