Calculadora de Matriz de Cofatores
Calcular matriz de cofatores passo a passo
A calculadora encontrará a matriz de cofatores da matriz quadrada fornecida, com as etapas mostradas.
Sua entrada
Encontre a matriz de cofatores de $$$\left[\begin{array}{ccc}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{array}\right]$$$.
Solução
A matriz de cofatores consiste em todos os cofatores da matriz fornecida, que são calculados de acordo com a fórmula $$$C_{ij}=\left(-1\right)^{i+j}M_{ij}$$$, onde $$$M_{ij}$$$ é o menor, ou seja, o determinante da submatriz formada pela exclusão da linha $$$i$$$ e da coluna $$$j$$$ da matriz dada.
Calcule todos os cofatores:
$$$C_{11} = \left(-1\right)^{1 + 1} \left|\begin{array}{cc}5 & 6\\8 & 9\end{array}\right| = -3$$$ (para etapas, consulte calculadora de determinantes).
$$$C_{12} = \left(-1\right)^{1 + 2} \left|\begin{array}{cc}4 & 6\\7 & 9\end{array}\right| = 6$$$ (para etapas, consulte calculadora de determinantes).
$$$C_{13} = \left(-1\right)^{1 + 3} \left|\begin{array}{cc}4 & 5\\7 & 8\end{array}\right| = -3$$$ (para etapas, consulte calculadora de determinantes).
$$$C_{21} = \left(-1\right)^{2 + 1} \left|\begin{array}{cc}2 & 3\\8 & 9\end{array}\right| = 6$$$ (para etapas, consulte calculadora de determinantes).
$$$C_{22} = \left(-1\right)^{2 + 2} \left|\begin{array}{cc}1 & 3\\7 & 9\end{array}\right| = -12$$$ (para etapas, consulte calculadora de determinantes).
$$$C_{23} = \left(-1\right)^{2 + 3} \left|\begin{array}{cc}1 & 2\\7 & 8\end{array}\right| = 6$$$ (para etapas, consulte calculadora de determinantes).
$$$C_{31} = \left(-1\right)^{3 + 1} \left|\begin{array}{cc}2 & 3\\5 & 6\end{array}\right| = -3$$$ (para etapas, consulte calculadora de determinantes).
$$$C_{32} = \left(-1\right)^{3 + 2} \left|\begin{array}{cc}1 & 3\\4 & 6\end{array}\right| = 6$$$ (para etapas, consulte calculadora de determinantes).
$$$C_{33} = \left(-1\right)^{3 + 3} \left|\begin{array}{cc}1 & 2\\4 & 5\end{array}\right| = -3$$$ (para etapas, consulte calculadora de determinantes).
Assim, a matriz de cofatores é $$$\left[\begin{array}{ccc}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{array}\right]$$$.
Responder
A matriz de cofatores é $$$\left[\begin{array}{ccc}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{array}\right]$$$A.