Vetor normal unitário principal para $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$

A calculadora encontrará o vetor normal principal unitário de $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$, com as etapas mostradas.

Calculadoras relacionadas: Calculadora de Vetor Tangente Unitário, Calculadora do vetor binormal unitário

$$$\langle$$$ $$$\rangle$$$
Separados por vírgula.
Deixe em branco se você não precisar do vetor em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre o vetor normal principal unitário de $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$.

Solução

Para encontrar o vetor normal unitário principal, precisamos calcular a derivada do vetor tangente unitário $$$\mathbf{\vec{T}\left(t\right)}$$$ e, em seguida, normalizá-lo (obter o vetor unitário).

Encontre o vetor tangente unitário: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$ (para as etapas, consulte calculadora de vetor tangente unitário).

$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle$$$ (para ver os passos, veja a calculadora de derivadas.)

Determine o vetor unitário: $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$ (para ver os passos, consulte calculadora de vetor unitário).

Resposta

O vetor normal unitário principal é $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$A.


Please try a new game Rotatly