Integral de $$$\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}$$$, com as etapas mostradas.

Calculadora relacionada: Calculadora de integrais definidas e impróprias

Por favor, escreva sem nenhum diferencial como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão/comentário, escreva nos comentários abaixo.

Sua entrada

Encontre $$$\int \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx$$$.

Solução

Rewrite the integrand using the double angle formula $$$\sin\left(2 x \right)\cos\left(2 x \right)=\frac{1}{2}\sin\left( 2 x \right)$$$:

$${\color{red}{\int{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{2}{\left(2 x \right)}}{4} d x}}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(x \right)} = \sin^{2}{\left(2 x \right)}$$$:

$${\color{red}{\int{\frac{\sin^{2}{\left(2 x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(2 x \right)} d x}}{4}\right)}}$$

Rewrite the sine using the power reducing formula $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ with $$$\alpha=2 x$$$:

$$\frac{{\color{red}{\int{\sin^{2}{\left(2 x \right)} d x}}}}{4} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 x \right)}}{2}\right)d x}}}}{4}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = 1 - \cos{\left(4 x \right)}$$$:

$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 x \right)}}{2}\right)d x}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(4 x \right)}\right)d x}}{2}\right)}}}{4}$$

Integrate term by term:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(4 x \right)}\right)d x}}}}{8} = \frac{{\color{red}{\left(\int{1 d x} - \int{\cos{\left(4 x \right)} d x}\right)}}}{8}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$- \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{1 d x}}}}{8} = - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{x}}}{8}$$

Let $$$u=4 x$$$.

Then $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (steps can be seen here), and we have that $$$dx = \frac{du}{4}$$$.

So,

$$\frac{x}{8} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = \frac{x}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{x}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{x}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$

The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{x}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{x}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$

Recall that $$$u=4 x$$$:

$$\frac{x}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{x}{8} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{32}$$

Therefore,

$$\int{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} d x} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}$$

Add the constant of integration:

$$\int{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} d x} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}+C$$

Answer: $$$\int{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} d x}=\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}+C$$$