$$$\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx$$$.

Çözüm

Integrand ifadesini çift açı formülünü kullanarak yeniden yazın $$$\sin\left(x \right)\cos\left(x \right)=\frac{1}{2}\sin\left( 2 x \right)$$$:

$${\color{red}{\int{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{2}{\left(2 x \right)}}{4} d x}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{4}$$$ ve $$$f{\left(x \right)} = \sin^{2}{\left(2 x \right)}$$$ ile uygula:

$${\color{red}{\int{\frac{\sin^{2}{\left(2 x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(2 x \right)} d x}}{4}\right)}}$$

Kuvvet indirgeme formülü $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$'i $$$\alpha=2 x$$$ ile uygula:

$$\frac{{\color{red}{\int{\sin^{2}{\left(2 x \right)} d x}}}}{4} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 x \right)}}{2}\right)d x}}}}{4}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = 1 - \cos{\left(4 x \right)}$$$ ile uygula:

$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 x \right)}}{2}\right)d x}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(4 x \right)}\right)d x}}{2}\right)}}}{4}$$

Her terimin integralini alın:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(4 x \right)}\right)d x}}}}{8} = \frac{{\color{red}{\left(\int{1 d x} - \int{\cos{\left(4 x \right)} d x}\right)}}}{8}$$

$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$- \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{1 d x}}}}{8} = - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{x}}}{8}$$

$$$u=4 x$$$ olsun.

Böylece $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{4}$$$ elde ederiz.

İntegral şu şekilde yeniden yazılabilir:

$$\frac{x}{8} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = \frac{x}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{4}$$$ ve $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ ile uygula:

$$\frac{x}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{x}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$

Kosinüsün integrali $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{x}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{x}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$

Hatırlayın ki $$$u=4 x$$$:

$$\frac{x}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{x}{8} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{32}$$

Dolayısıyla,

$$\int{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} d x} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}$$

İntegrasyon sabitini ekleyin:

$$\int{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} d x} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}+C$$

Cevap

$$$\int \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\, dx = \left(\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32}\right) + C$$$A


Please try a new game Rotatly