Integral de $$$\frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Solução
Reescreva o cosseno usando a fórmula do ângulo duplo $$$\cos\left(2x\right)=-2\sin^2\left(x\right)+1$$$:
$${\color{red}{\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1 - 2 \sin^{2}{\left(x \right)}}{\sin{\left(x \right)}} d x}}}$$
Separe a fração:
$${\color{red}{\int{\frac{1 - 2 \sin^{2}{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- 2 \sin{\left(x \right)} + \frac{1}{\sin{\left(x \right)}}\right)d x}}}$$
Integre termo a termo:
$${\color{red}{\int{\left(- 2 \sin{\left(x \right)} + \frac{1}{\sin{\left(x \right)}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{\sin{\left(x \right)}} d x} - \int{2 \sin{\left(x \right)} d x}\right)}}$$
Reescreva o seno usando a fórmula do ângulo duplo $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:
$$- \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}} = - \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$
Multiplique o numerador e o denominador por $$$\sec^2\left(\frac{x}{2} \right)$$$:
$$- \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = - \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$
Seja $$$u=\tan{\left(\frac{x}{2} \right)}$$$.
Então $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (veja os passos »), e obtemos $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.
Logo,
$$- \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = - \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = - \int{2 \sin{\left(x \right)} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recorde que $$$u=\tan{\left(\frac{x}{2} \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{2 \sin{\left(x \right)} d x} = \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)} - \int{2 \sin{\left(x \right)} d x}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - {\color{red}{\int{2 \sin{\left(x \right)} d x}}} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - {\color{red}{\left(2 \int{\sin{\left(x \right)} d x}\right)}}$$
A integral do seno é $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - 2 {\color{red}{\int{\sin{\left(x \right)} d x}}} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - 2 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Portanto,
$$\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + 2 \cos{\left(x \right)}$$
Adicione a constante de integração:
$$\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + 2 \cos{\left(x \right)}+C$$
Resposta
$$$\int \frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx = \left(\ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) + 2 \cos{\left(x \right)}\right) + C$$$A