Ολοκλήρωμα του $$$\frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Λύση
Ξαναγράψτε το συνημίτονο χρησιμοποιώντας τον τύπο διπλής γωνίας $$$\cos\left(2x\right)=-2\sin^2\left(x\right)+1$$$:
$${\color{red}{\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1 - 2 \sin^{2}{\left(x \right)}}{\sin{\left(x \right)}} d x}}}$$
Διαχωρίστε το κλάσμα:
$${\color{red}{\int{\frac{1 - 2 \sin^{2}{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- 2 \sin{\left(x \right)} + \frac{1}{\sin{\left(x \right)}}\right)d x}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(- 2 \sin{\left(x \right)} + \frac{1}{\sin{\left(x \right)}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{\sin{\left(x \right)}} d x} - \int{2 \sin{\left(x \right)} d x}\right)}}$$
Εκφράστε το ημίτονο χρησιμοποιώντας τον τύπο διπλής γωνίας $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:
$$- \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}} = - \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$
Πολλαπλασιάστε τον αριθμητή και τον παρονομαστή με $$$\sec^2\left(\frac{x}{2} \right)$$$:
$$- \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = - \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$
Έστω $$$u=\tan{\left(\frac{x}{2} \right)}$$$.
Τότε $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.
Επομένως,
$$- \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = - \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{2 \sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = - \int{2 \sin{\left(x \right)} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Θυμηθείτε ότι $$$u=\tan{\left(\frac{x}{2} \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{2 \sin{\left(x \right)} d x} = \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)} - \int{2 \sin{\left(x \right)} d x}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=2$$$ και $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - {\color{red}{\int{2 \sin{\left(x \right)} d x}}} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - {\color{red}{\left(2 \int{\sin{\left(x \right)} d x}\right)}}$$
Το ολοκλήρωμα του ημιτόνου είναι $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - 2 {\color{red}{\int{\sin{\left(x \right)} d x}}} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - 2 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Επομένως,
$$\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + 2 \cos{\left(x \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + 2 \cos{\left(x \right)}+C$$
Απάντηση
$$$\int \frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx = \left(\ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) + 2 \cos{\left(x \right)}\right) + C$$$A