Integral de $$$\frac{3}{x^{2} + 2}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{3}{x^{2} + 2}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=3$$$ e $$$f{\left(x \right)} = \frac{1}{x^{2} + 2}$$$:
$${\color{red}{\int{\frac{3}{x^{2} + 2} d x}}} = {\color{red}{\left(3 \int{\frac{1}{x^{2} + 2} d x}\right)}}$$
Seja $$$u=\frac{\sqrt{2}}{2} x$$$.
Então $$$du=\left(\frac{\sqrt{2}}{2} x\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$ (veja os passos »), e obtemos $$$dx = \sqrt{2} du$$$.
Logo,
$$3 {\color{red}{\int{\frac{1}{x^{2} + 2} d x}}} = 3 {\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{\sqrt{2}}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$:
$$3 {\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}} = 3 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{u^{2} + 1} d u}}{2}\right)}}$$
A integral de $$$\frac{1}{u^{2} + 1}$$$ é $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{3 \sqrt{2} {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{3 \sqrt{2} {\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$
Recorde que $$$u=\frac{\sqrt{2}}{2} x$$$:
$$\frac{3 \sqrt{2} \operatorname{atan}{\left({\color{red}{u}} \right)}}{2} = \frac{3 \sqrt{2} \operatorname{atan}{\left({\color{red}{\frac{\sqrt{2}}{2} x}} \right)}}{2}$$
Portanto,
$$\int{\frac{3}{x^{2} + 2} d x} = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$
Adicione a constante de integração:
$$\int{\frac{3}{x^{2} + 2} d x} = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$
Resposta
$$$\int \frac{3}{x^{2} + 2}\, dx = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A