Ολοκλήρωμα του $$$\frac{3}{x^{2} + 2}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{3}{x^{2} + 2}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=3$$$ και $$$f{\left(x \right)} = \frac{1}{x^{2} + 2}$$$:
$${\color{red}{\int{\frac{3}{x^{2} + 2} d x}}} = {\color{red}{\left(3 \int{\frac{1}{x^{2} + 2} d x}\right)}}$$
Έστω $$$u=\frac{\sqrt{2}}{2} x$$$.
Τότε $$$du=\left(\frac{\sqrt{2}}{2} x\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \sqrt{2} du$$$.
Επομένως,
$$3 {\color{red}{\int{\frac{1}{x^{2} + 2} d x}}} = 3 {\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{\sqrt{2}}{2}$$$ και $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$:
$$3 {\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}} = 3 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{u^{2} + 1} d u}}{2}\right)}}$$
Το ολοκλήρωμα του $$$\frac{1}{u^{2} + 1}$$$ είναι $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{3 \sqrt{2} {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{3 \sqrt{2} {\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$
Θυμηθείτε ότι $$$u=\frac{\sqrt{2}}{2} x$$$:
$$\frac{3 \sqrt{2} \operatorname{atan}{\left({\color{red}{u}} \right)}}{2} = \frac{3 \sqrt{2} \operatorname{atan}{\left({\color{red}{\frac{\sqrt{2}}{2} x}} \right)}}{2}$$
Επομένως,
$$\int{\frac{3}{x^{2} + 2} d x} = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{3}{x^{2} + 2} d x} = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$
Απάντηση
$$$\int \frac{3}{x^{2} + 2}\, dx = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A