Integral de $$$\left(\frac{11}{5}\right)^{x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(\frac{11}{5}\right)^{x}\, dx$$$.
Solução
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{11}{5}$$$:
$${\color{red}{\int{\left(\frac{11}{5}\right)^{x} d x}}} = {\color{red}{\frac{\left(\frac{11}{5}\right)^{x}}{\ln{\left(\frac{11}{5} \right)}}}}$$
Portanto,
$$\int{\left(\frac{11}{5}\right)^{x} d x} = \frac{\left(\frac{11}{5}\right)^{x}}{\ln{\left(\frac{11}{5} \right)}}$$
Simplifique:
$$\int{\left(\frac{11}{5}\right)^{x} d x} = \frac{\left(\frac{11}{5}\right)^{x}}{- \ln{\left(5 \right)} + \ln{\left(11 \right)}}$$
Adicione a constante de integração:
$$\int{\left(\frac{11}{5}\right)^{x} d x} = \frac{\left(\frac{11}{5}\right)^{x}}{- \ln{\left(5 \right)} + \ln{\left(11 \right)}}+C$$
Resposta
$$$\int \left(\frac{11}{5}\right)^{x}\, dx = \frac{\left(\frac{11}{5}\right)^{x}}{- \ln\left(5\right) + \ln\left(11\right)} + C$$$A