$$$\left(\frac{11}{5}\right)^{x}$$$ 的積分

此計算器將求出 $$$\left(\frac{11}{5}\right)^{x}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(\frac{11}{5}\right)^{x}\, dx$$$

解答

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{11}{5}$$$:

$${\color{red}{\int{\left(\frac{11}{5}\right)^{x} d x}}} = {\color{red}{\frac{\left(\frac{11}{5}\right)^{x}}{\ln{\left(\frac{11}{5} \right)}}}}$$

因此,

$$\int{\left(\frac{11}{5}\right)^{x} d x} = \frac{\left(\frac{11}{5}\right)^{x}}{\ln{\left(\frac{11}{5} \right)}}$$

化簡:

$$\int{\left(\frac{11}{5}\right)^{x} d x} = \frac{\left(\frac{11}{5}\right)^{x}}{- \ln{\left(5 \right)} + \ln{\left(11 \right)}}$$

加上積分常數:

$$\int{\left(\frac{11}{5}\right)^{x} d x} = \frac{\left(\frac{11}{5}\right)^{x}}{- \ln{\left(5 \right)} + \ln{\left(11 \right)}}+C$$

答案

$$$\int \left(\frac{11}{5}\right)^{x}\, dx = \frac{\left(\frac{11}{5}\right)^{x}}{- \ln\left(5\right) + \ln\left(11\right)} + C$$$A


Please try a new game Rotatly