$$$\left(\frac{11}{5}\right)^{x}$$$ 的积分

该计算器将求出$$$\left(\frac{11}{5}\right)^{x}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(\frac{11}{5}\right)^{x}\, dx$$$

解答

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{11}{5}$$$:

$${\color{red}{\int{\left(\frac{11}{5}\right)^{x} d x}}} = {\color{red}{\frac{\left(\frac{11}{5}\right)^{x}}{\ln{\left(\frac{11}{5} \right)}}}}$$

因此,

$$\int{\left(\frac{11}{5}\right)^{x} d x} = \frac{\left(\frac{11}{5}\right)^{x}}{\ln{\left(\frac{11}{5} \right)}}$$

化简:

$$\int{\left(\frac{11}{5}\right)^{x} d x} = \frac{\left(\frac{11}{5}\right)^{x}}{- \ln{\left(5 \right)} + \ln{\left(11 \right)}}$$

加上积分常数:

$$\int{\left(\frac{11}{5}\right)^{x} d x} = \frac{\left(\frac{11}{5}\right)^{x}}{- \ln{\left(5 \right)} + \ln{\left(11 \right)}}+C$$

答案

$$$\int \left(\frac{11}{5}\right)^{x}\, dx = \frac{\left(\frac{11}{5}\right)^{x}}{- \ln\left(5\right) + \ln\left(11\right)} + C$$$A


Please try a new game Rotatly