Integral de $$$y^{23} \left(x + y\right)$$$ em relação a $$$x$$$

A calculadora encontrará a integral/primitiva de $$$y^{23} \left(x + y\right)$$$ em relação a $$$x$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int y^{23} \left(x + y\right)\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=y^{23}$$$ e $$$f{\left(x \right)} = x + y$$$:

$${\color{red}{\int{y^{23} \left(x + y\right) d x}}} = {\color{red}{y^{23} \int{\left(x + y\right)d x}}}$$

Integre termo a termo:

$$y^{23} {\color{red}{\int{\left(x + y\right)d x}}} = y^{23} {\color{red}{\left(\int{x d x} + \int{y d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$y^{23} \left(\int{y d x} + {\color{red}{\int{x d x}}}\right)=y^{23} \left(\int{y d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=y^{23} \left(\int{y d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$

Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=y$$$:

$$y^{23} \left(\frac{x^{2}}{2} + {\color{red}{\int{y d x}}}\right) = y^{23} \left(\frac{x^{2}}{2} + {\color{red}{x y}}\right)$$

Portanto,

$$\int{y^{23} \left(x + y\right) d x} = y^{23} \left(\frac{x^{2}}{2} + x y\right)$$

Simplifique:

$$\int{y^{23} \left(x + y\right) d x} = \frac{x y^{23} \left(x + 2 y\right)}{2}$$

Adicione a constante de integração:

$$\int{y^{23} \left(x + y\right) d x} = \frac{x y^{23} \left(x + 2 y\right)}{2}+C$$

Resposta

$$$\int y^{23} \left(x + y\right)\, dx = \frac{x y^{23} \left(x + 2 y\right)}{2} + C$$$A


Please try a new game Rotatly