Integral de $$$y^{23} \left(x + y\right)$$$ con respecto a $$$x$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int y^{23} \left(x + y\right)\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=y^{23}$$$ y $$$f{\left(x \right)} = x + y$$$:
$${\color{red}{\int{y^{23} \left(x + y\right) d x}}} = {\color{red}{y^{23} \int{\left(x + y\right)d x}}}$$
Integra término a término:
$$y^{23} {\color{red}{\int{\left(x + y\right)d x}}} = y^{23} {\color{red}{\left(\int{x d x} + \int{y d x}\right)}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$y^{23} \left(\int{y d x} + {\color{red}{\int{x d x}}}\right)=y^{23} \left(\int{y d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=y^{23} \left(\int{y d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$
Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=y$$$:
$$y^{23} \left(\frac{x^{2}}{2} + {\color{red}{\int{y d x}}}\right) = y^{23} \left(\frac{x^{2}}{2} + {\color{red}{x y}}\right)$$
Por lo tanto,
$$\int{y^{23} \left(x + y\right) d x} = y^{23} \left(\frac{x^{2}}{2} + x y\right)$$
Simplificar:
$$\int{y^{23} \left(x + y\right) d x} = \frac{x y^{23} \left(x + 2 y\right)}{2}$$
Añade la constante de integración:
$$\int{y^{23} \left(x + y\right) d x} = \frac{x y^{23} \left(x + 2 y\right)}{2}+C$$
Respuesta
$$$\int y^{23} \left(x + y\right)\, dx = \frac{x y^{23} \left(x + 2 y\right)}{2} + C$$$A