Integral de $$$c y^{2}$$$ em relação a $$$y$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int c y^{2}\, dy$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ usando $$$c=c$$$ e $$$f{\left(y \right)} = y^{2}$$$:
$${\color{red}{\int{c y^{2} d y}}} = {\color{red}{c \int{y^{2} d y}}}$$
Aplique a regra da potência $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:
$$c {\color{red}{\int{y^{2} d y}}}=c {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=c {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$
Portanto,
$$\int{c y^{2} d y} = \frac{c y^{3}}{3}$$
Adicione a constante de integração:
$$\int{c y^{2} d y} = \frac{c y^{3}}{3}+C$$
Resposta
$$$\int c y^{2}\, dy = \frac{c y^{3}}{3} + C$$$A