$$$c y^{2}$$$ 對 $$$y$$$ 的積分
您的輸入
求$$$\int c y^{2}\, dy$$$。
解答
套用常數倍法則 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$,使用 $$$c=c$$$ 與 $$$f{\left(y \right)} = y^{2}$$$:
$${\color{red}{\int{c y^{2} d y}}} = {\color{red}{c \int{y^{2} d y}}}$$
套用冪次法則 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$c {\color{red}{\int{y^{2} d y}}}=c {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=c {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$
因此,
$$\int{c y^{2} d y} = \frac{c y^{3}}{3}$$
加上積分常數:
$$\int{c y^{2} d y} = \frac{c y^{3}}{3}+C$$
答案
$$$\int c y^{2}\, dy = \frac{c y^{3}}{3} + C$$$A
Please try a new game Rotatly