Integral de $$$- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}$$$ em relação a $$$x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{a^{2}}{\sin{\left(x \right)}} d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
Reescreva o seno usando a fórmula do ângulo duplo $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{\sin{\left(x \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$
Multiplique o numerador e o denominador por $$$\sec^2\left(\frac{x}{2} \right)$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2} \sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$
Seja $$$u=\tan{\left(\frac{x}{2} \right)}$$$.
Então $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (veja os passos »), e obtemos $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.
A integral pode ser reescrita como
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2} \sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{u} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=a^{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{u} d u}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{a^{2} \int{\frac{1}{u} d u}}}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- a^{2} {\color{red}{\int{\frac{1}{u} d u}}} + \int{\sin{\left(x \right)} d x} = - a^{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}} + \int{\sin{\left(x \right)} d x}$$
Recorde que $$$u=\tan{\left(\frac{x}{2} \right)}$$$:
$$- a^{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \int{\sin{\left(x \right)} d x} = - a^{2} \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)} + \int{\sin{\left(x \right)} d x}$$
A integral do seno é $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Portanto,
$$\int{\left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)d x} = - a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - \cos{\left(x \right)}$$
Adicione a constante de integração:
$$\int{\left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)d x} = - a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - \cos{\left(x \right)}+C$$
Resposta
$$$\int \left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)\, dx = \left(- a^{2} \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) - \cos{\left(x \right)}\right) + C$$$A