$$$- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}$$$ 對 $$$x$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{a^{2}}{\sin{\left(x \right)}} d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
使用倍角公式 $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$ 重寫正弦:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{\sin{\left(x \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$
將分子與分母同時乘以 $$$\sec^2\left(\frac{x}{2} \right)$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2} \sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$
令 $$$u=\tan{\left(\frac{x}{2} \right)}$$$。
則 $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$。
該積分可改寫為
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2} \sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=a^{2}$$$ 與 $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{u} d u}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{a^{2} \int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- a^{2} {\color{red}{\int{\frac{1}{u} d u}}} + \int{\sin{\left(x \right)} d x} = - a^{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}} + \int{\sin{\left(x \right)} d x}$$
回顧一下 $$$u=\tan{\left(\frac{x}{2} \right)}$$$:
$$- a^{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \int{\sin{\left(x \right)} d x} = - a^{2} \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)} + \int{\sin{\left(x \right)} d x}$$
正弦函數的積分為 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
因此,
$$\int{\left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)d x} = - a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - \cos{\left(x \right)}$$
加上積分常數:
$$\int{\left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)d x} = - a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - \cos{\left(x \right)}+C$$
答案
$$$\int \left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)\, dx = \left(- a^{2} \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) - \cos{\left(x \right)}\right) + C$$$A