$$$- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}$$$ の $$$x$$$ に関する積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)\, dx$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{a^{2}}{\sin{\left(x \right)}} d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
二倍角の公式を用いて正弦を書き換える $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{\sin{\left(x \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$
分子と分母に$$$\sec^2\left(\frac{x}{2} \right)$$$を掛ける:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2} \sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$
$$$u=\tan{\left(\frac{x}{2} \right)}$$$ とする。
すると $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$(手順は»で確認できます)、$$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$ となります。
したがって、
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2} \sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{u} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=a^{2}$$$ と $$$f{\left(u \right)} = \frac{1}{u}$$$ に対して適用する:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{a^{2}}{u} d u}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{a^{2} \int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$- a^{2} {\color{red}{\int{\frac{1}{u} d u}}} + \int{\sin{\left(x \right)} d x} = - a^{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}} + \int{\sin{\left(x \right)} d x}$$
次のことを思い出してください $$$u=\tan{\left(\frac{x}{2} \right)}$$$:
$$- a^{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \int{\sin{\left(x \right)} d x} = - a^{2} \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)} + \int{\sin{\left(x \right)} d x}$$
正弦関数の不定積分は$$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$です:
$$- a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
したがって、
$$\int{\left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)d x} = - a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - \cos{\left(x \right)}$$
積分定数を加える:
$$\int{\left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)d x} = - a^{2} \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} - \cos{\left(x \right)}+C$$
解答
$$$\int \left(- \frac{a^{2}}{\sin{\left(x \right)}} + \sin{\left(x \right)}\right)\, dx = \left(- a^{2} \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) - \cos{\left(x \right)}\right) + C$$$A