Integral de $$$\ln^{3}\left(x^{6}\right)$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \ln^{3}\left(x^{6}\right)\, dx$$$.
Solução
A entrada é reescrita como: $$$\int{\ln{\left(x^{6} \right)}^{3} d x}=\int{216 \ln{\left(x \right)}^{3} d x}$$$.
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=216$$$ e $$$f{\left(x \right)} = \ln{\left(x \right)}^{3}$$$:
$${\color{red}{\int{216 \ln{\left(x \right)}^{3} d x}}} = {\color{red}{\left(216 \int{\ln{\left(x \right)}^{3} d x}\right)}}$$
Para a integral $$$\int{\ln{\left(x \right)}^{3} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=\ln{\left(x \right)}^{3}$$$ e $$$\operatorname{dv}=dx$$$.
Então $$$\operatorname{du}=\left(\ln{\left(x \right)}^{3}\right)^{\prime }dx=\frac{3 \ln{\left(x \right)}^{2}}{x} dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{1 d x}=x$$$ (os passos podem ser vistos »).
Portanto,
$$216 {\color{red}{\int{\ln{\left(x \right)}^{3} d x}}}=216 {\color{red}{\left(\ln{\left(x \right)}^{3} \cdot x-\int{x \cdot \frac{3 \ln{\left(x \right)}^{2}}{x} d x}\right)}}=216 {\color{red}{\left(x \ln{\left(x \right)}^{3} - \int{3 \ln{\left(x \right)}^{2} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=3$$$ e $$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$:
$$216 x \ln{\left(x \right)}^{3} - 216 {\color{red}{\int{3 \ln{\left(x \right)}^{2} d x}}} = 216 x \ln{\left(x \right)}^{3} - 216 {\color{red}{\left(3 \int{\ln{\left(x \right)}^{2} d x}\right)}}$$
Para a integral $$$\int{\ln{\left(x \right)}^{2} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$ e $$$\operatorname{dv}=dx$$$.
Então $$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{1 d x}=x$$$ (os passos podem ser vistos »).
Logo,
$$216 x \ln{\left(x \right)}^{3} - 648 {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}=216 x \ln{\left(x \right)}^{3} - 648 {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}=216 x \ln{\left(x \right)}^{3} - 648 {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$$216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 648 {\color{red}{\int{2 \ln{\left(x \right)} d x}}} = 216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 648 {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}$$
Para a integral $$$\int{\ln{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=\ln{\left(x \right)}$$$ e $$$\operatorname{dv}=dx$$$.
Então $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{1 d x}=x$$$ (os passos podem ser vistos »).
Assim,
$$216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 {\color{red}{\int{\ln{\left(x \right)} d x}}}=216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=1$$$:
$$216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 x \ln{\left(x \right)} - 1296 {\color{red}{\int{1 d x}}} = 216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 x \ln{\left(x \right)} - 1296 {\color{red}{x}}$$
Portanto,
$$\int{216 \ln{\left(x \right)}^{3} d x} = 216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 x \ln{\left(x \right)} - 1296 x$$
Simplifique:
$$\int{216 \ln{\left(x \right)}^{3} d x} = 216 x \left(\ln{\left(x \right)}^{3} - 3 \ln{\left(x \right)}^{2} + 6 \ln{\left(x \right)} - 6\right)$$
Adicione a constante de integração:
$$\int{216 \ln{\left(x \right)}^{3} d x} = 216 x \left(\ln{\left(x \right)}^{3} - 3 \ln{\left(x \right)}^{2} + 6 \ln{\left(x \right)} - 6\right)+C$$
Resposta
$$$\int \ln^{3}\left(x^{6}\right)\, dx = 216 x \left(\ln^{3}\left(x\right) - 3 \ln^{2}\left(x\right) + 6 \ln\left(x\right) - 6\right) + C$$$A