Funktion $$$\ln^{3}\left(x^{6}\right)$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \ln^{3}\left(x^{6}\right)\, dx$$$.
Ratkaisu
Syöte kirjoitetaan muotoon: $$$\int{\ln{\left(x^{6} \right)}^{3} d x}=\int{216 \ln{\left(x \right)}^{3} d x}$$$.
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=216$$$ ja $$$f{\left(x \right)} = \ln{\left(x \right)}^{3}$$$:
$${\color{red}{\int{216 \ln{\left(x \right)}^{3} d x}}} = {\color{red}{\left(216 \int{\ln{\left(x \right)}^{3} d x}\right)}}$$
Integraalin $$$\int{\ln{\left(x \right)}^{3} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=\ln{\left(x \right)}^{3}$$$ ja $$$\operatorname{dv}=dx$$$.
Tällöin $$$\operatorname{du}=\left(\ln{\left(x \right)}^{3}\right)^{\prime }dx=\frac{3 \ln{\left(x \right)}^{2}}{x} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d x}=x$$$ (vaiheet ovat nähtävissä »).
Integraali muuttuu muotoon
$$216 {\color{red}{\int{\ln{\left(x \right)}^{3} d x}}}=216 {\color{red}{\left(\ln{\left(x \right)}^{3} \cdot x-\int{x \cdot \frac{3 \ln{\left(x \right)}^{2}}{x} d x}\right)}}=216 {\color{red}{\left(x \ln{\left(x \right)}^{3} - \int{3 \ln{\left(x \right)}^{2} d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=3$$$ ja $$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$:
$$216 x \ln{\left(x \right)}^{3} - 216 {\color{red}{\int{3 \ln{\left(x \right)}^{2} d x}}} = 216 x \ln{\left(x \right)}^{3} - 216 {\color{red}{\left(3 \int{\ln{\left(x \right)}^{2} d x}\right)}}$$
Integraalin $$$\int{\ln{\left(x \right)}^{2} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$ ja $$$\operatorname{dv}=dx$$$.
Tällöin $$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d x}=x$$$ (vaiheet ovat nähtävissä »).
Integraali voidaan kirjoittaa muotoon
$$216 x \ln{\left(x \right)}^{3} - 648 {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}=216 x \ln{\left(x \right)}^{3} - 648 {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}=216 x \ln{\left(x \right)}^{3} - 648 {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$$216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 648 {\color{red}{\int{2 \ln{\left(x \right)} d x}}} = 216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 648 {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}$$
Integraalin $$$\int{\ln{\left(x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=\ln{\left(x \right)}$$$ ja $$$\operatorname{dv}=dx$$$.
Tällöin $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d x}=x$$$ (vaiheet ovat nähtävissä »).
Siis,
$$216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 {\color{red}{\int{\ln{\left(x \right)} d x}}}=216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=1$$$:
$$216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 x \ln{\left(x \right)} - 1296 {\color{red}{\int{1 d x}}} = 216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 x \ln{\left(x \right)} - 1296 {\color{red}{x}}$$
Näin ollen,
$$\int{216 \ln{\left(x \right)}^{3} d x} = 216 x \ln{\left(x \right)}^{3} - 648 x \ln{\left(x \right)}^{2} + 1296 x \ln{\left(x \right)} - 1296 x$$
Sievennä:
$$\int{216 \ln{\left(x \right)}^{3} d x} = 216 x \left(\ln{\left(x \right)}^{3} - 3 \ln{\left(x \right)}^{2} + 6 \ln{\left(x \right)} - 6\right)$$
Lisää integrointivakio:
$$\int{216 \ln{\left(x \right)}^{3} d x} = 216 x \left(\ln{\left(x \right)}^{3} - 3 \ln{\left(x \right)}^{2} + 6 \ln{\left(x \right)} - 6\right)+C$$
Vastaus
$$$\int \ln^{3}\left(x^{6}\right)\, dx = 216 x \left(\ln^{3}\left(x\right) - 3 \ln^{2}\left(x\right) + 6 \ln\left(x\right) - 6\right) + C$$$A