Integral de $$$\ln\left(2 x\right)$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \ln\left(2 x\right)\, dx$$$.
Solução
Seja $$$u=2 x$$$.
Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.
A integral torna-se
$${\color{red}{\int{\ln{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{2} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\ln{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\ln{\left(u \right)} d u}}{2}\right)}}$$
Para a integral $$$\int{\ln{\left(u \right)} d u}$$$, use integração por partes $$$\int \operatorname{\omega} \operatorname{dv} = \operatorname{\omega}\operatorname{v} - \int \operatorname{v} \operatorname{d\omega}$$$.
Sejam $$$\operatorname{\omega}=\ln{\left(u \right)}$$$ e $$$\operatorname{dv}=du$$$.
Então $$$\operatorname{d\omega}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{1 d u}=u$$$ (os passos podem ser vistos »).
A integral torna-se
$$\frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{2}=\frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{2}=\frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{2}$$
Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:
$$\frac{u \ln{\left(u \right)}}{2} - \frac{{\color{red}{\int{1 d u}}}}{2} = \frac{u \ln{\left(u \right)}}{2} - \frac{{\color{red}{u}}}{2}$$
Recorde que $$$u=2 x$$$:
$$- \frac{{\color{red}{u}}}{2} + \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{2} = - \frac{{\color{red}{\left(2 x\right)}}}{2} + \frac{{\color{red}{\left(2 x\right)}} \ln{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
Portanto,
$$\int{\ln{\left(2 x \right)} d x} = x \ln{\left(2 x \right)} - x$$
Simplifique:
$$\int{\ln{\left(2 x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \ln{\left(2 \right)}\right)$$
Adicione a constante de integração:
$$\int{\ln{\left(2 x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \ln{\left(2 \right)}\right)+C$$
Resposta
$$$\int \ln\left(2 x\right)\, dx = x \left(\ln\left(x\right) - 1 + \ln\left(2\right)\right) + C$$$A