Integrale di $$$\ln\left(2 x\right)$$$

La calcolatrice troverà l'integrale/primitiva di $$$\ln\left(2 x\right)$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \ln\left(2 x\right)\, dx$$$.

Soluzione

Sia $$$u=2 x$$$.

Quindi $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{2}$$$.

Pertanto,

$${\color{red}{\int{\ln{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{2} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\ln{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\ln{\left(u \right)} d u}}{2}\right)}}$$

Per l'integrale $$$\int{\ln{\left(u \right)} d u}$$$, usa l'integrazione per parti $$$\int \operatorname{\omega} \operatorname{dv} = \operatorname{\omega}\operatorname{v} - \int \operatorname{v} \operatorname{d\omega}$$$.

Siano $$$\operatorname{\omega}=\ln{\left(u \right)}$$$ e $$$\operatorname{dv}=du$$$.

Quindi $$$\operatorname{d\omega}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{1 d u}=u$$$ (i passaggi si possono vedere »).

Pertanto,

$$\frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{2}=\frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{2}=\frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{2}$$

Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=1$$$:

$$\frac{u \ln{\left(u \right)}}{2} - \frac{{\color{red}{\int{1 d u}}}}{2} = \frac{u \ln{\left(u \right)}}{2} - \frac{{\color{red}{u}}}{2}$$

Ricordiamo che $$$u=2 x$$$:

$$- \frac{{\color{red}{u}}}{2} + \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{2} = - \frac{{\color{red}{\left(2 x\right)}}}{2} + \frac{{\color{red}{\left(2 x\right)}} \ln{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

Pertanto,

$$\int{\ln{\left(2 x \right)} d x} = x \ln{\left(2 x \right)} - x$$

Semplifica:

$$\int{\ln{\left(2 x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \ln{\left(2 \right)}\right)$$

Aggiungi la costante di integrazione:

$$\int{\ln{\left(2 x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \ln{\left(2 \right)}\right)+C$$

Risposta

$$$\int \ln\left(2 x\right)\, dx = x \left(\ln\left(x\right) - 1 + \ln\left(2\right)\right) + C$$$A


Please try a new game Rotatly