Integral de $$$x e^{2} e^{x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int x e^{2} e^{x}\, dx$$$.
Solução
A entrada é reescrita como: $$$\int{x e^{2} e^{x} d x}=\int{x e^{x + 2} d x}$$$.
Para a integral $$$\int{x e^{x + 2} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=e^{x + 2} dx$$$.
Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{x + 2} d x}=e^{x + 2}$$$ (os passos podem ser vistos »).
A integral pode ser reescrita como
$${\color{red}{\int{x e^{x + 2} d x}}}={\color{red}{\left(x \cdot e^{x + 2}-\int{e^{x + 2} \cdot 1 d x}\right)}}={\color{red}{\left(x e^{x + 2} - \int{e^{x + 2} d x}\right)}}$$
Seja $$$u=x + 2$$$.
Então $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
A integral torna-se
$$x e^{x + 2} - {\color{red}{\int{e^{x + 2} d x}}} = x e^{x + 2} - {\color{red}{\int{e^{u} d u}}}$$
A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:
$$x e^{x + 2} - {\color{red}{\int{e^{u} d u}}} = x e^{x + 2} - {\color{red}{e^{u}}}$$
Recorde que $$$u=x + 2$$$:
$$x e^{x + 2} - e^{{\color{red}{u}}} = x e^{x + 2} - e^{{\color{red}{\left(x + 2\right)}}}$$
Portanto,
$$\int{x e^{x + 2} d x} = x e^{x + 2} - e^{x + 2}$$
Simplifique:
$$\int{x e^{x + 2} d x} = \left(x - 1\right) e^{x + 2}$$
Adicione a constante de integração:
$$\int{x e^{x + 2} d x} = \left(x - 1\right) e^{x + 2}+C$$
Resposta
$$$\int x e^{2} e^{x}\, dx = \left(x - 1\right) e^{x + 2} + C$$$A