Integral de $$$\cos{\left(23 x \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$\cos{\left(23 x \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \cos{\left(23 x \right)}\, dx$$$.

Solução

Seja $$$u=23 x$$$.

Então $$$du=\left(23 x\right)^{\prime }dx = 23 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{23}$$$.

A integral pode ser reescrita como

$${\color{red}{\int{\cos{\left(23 x \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{23} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{23}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{23} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{23}\right)}}$$

A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{23} = \frac{{\color{red}{\sin{\left(u \right)}}}}{23}$$

Recorde que $$$u=23 x$$$:

$$\frac{\sin{\left({\color{red}{u}} \right)}}{23} = \frac{\sin{\left({\color{red}{\left(23 x\right)}} \right)}}{23}$$

Portanto,

$$\int{\cos{\left(23 x \right)} d x} = \frac{\sin{\left(23 x \right)}}{23}$$

Adicione a constante de integração:

$$\int{\cos{\left(23 x \right)} d x} = \frac{\sin{\left(23 x \right)}}{23}+C$$

Resposta

$$$\int \cos{\left(23 x \right)}\, dx = \frac{\sin{\left(23 x \right)}}{23} + C$$$A


Please try a new game Rotatly