Intégrale de $$$\cos{\left(23 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \cos{\left(23 x \right)}\, dx$$$.
Solution
Soit $$$u=23 x$$$.
Alors $$$du=\left(23 x\right)^{\prime }dx = 23 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{23}$$$.
Par conséquent,
$${\color{red}{\int{\cos{\left(23 x \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{23} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{23}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{23} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{23}\right)}}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{23} = \frac{{\color{red}{\sin{\left(u \right)}}}}{23}$$
Rappelons que $$$u=23 x$$$ :
$$\frac{\sin{\left({\color{red}{u}} \right)}}{23} = \frac{\sin{\left({\color{red}{\left(23 x\right)}} \right)}}{23}$$
Par conséquent,
$$\int{\cos{\left(23 x \right)} d x} = \frac{\sin{\left(23 x \right)}}{23}$$
Ajouter la constante d'intégration :
$$\int{\cos{\left(23 x \right)} d x} = \frac{\sin{\left(23 x \right)}}{23}+C$$
Réponse
$$$\int \cos{\left(23 x \right)}\, dx = \frac{\sin{\left(23 x \right)}}{23} + C$$$A