Ολοκλήρωμα του $$$\cos{\left(23 x \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\cos{\left(23 x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \cos{\left(23 x \right)}\, dx$$$.

Λύση

Έστω $$$u=23 x$$$.

Τότε $$$du=\left(23 x\right)^{\prime }dx = 23 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{23}$$$.

Επομένως,

$${\color{red}{\int{\cos{\left(23 x \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{23} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{23}$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{23} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{23}\right)}}$$

Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{23} = \frac{{\color{red}{\sin{\left(u \right)}}}}{23}$$

Θυμηθείτε ότι $$$u=23 x$$$:

$$\frac{\sin{\left({\color{red}{u}} \right)}}{23} = \frac{\sin{\left({\color{red}{\left(23 x\right)}} \right)}}{23}$$

Επομένως,

$$\int{\cos{\left(23 x \right)} d x} = \frac{\sin{\left(23 x \right)}}{23}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\cos{\left(23 x \right)} d x} = \frac{\sin{\left(23 x \right)}}{23}+C$$

Απάντηση

$$$\int \cos{\left(23 x \right)}\, dx = \frac{\sin{\left(23 x \right)}}{23} + C$$$A


Please try a new game Rotatly