Integral de $$$\frac{8000}{t^{2}}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{8000}{t^{2}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{8000}{t^{2}}\, dt$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=8000$$$ e $$$f{\left(t \right)} = \frac{1}{t^{2}}$$$:

$${\color{red}{\int{\frac{8000}{t^{2}} d t}}} = {\color{red}{\left(8000 \int{\frac{1}{t^{2}} d t}\right)}}$$

Aplique a regra da potência $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=-2$$$:

$$8000 {\color{red}{\int{\frac{1}{t^{2}} d t}}}=8000 {\color{red}{\int{t^{-2} d t}}}=8000 {\color{red}{\frac{t^{-2 + 1}}{-2 + 1}}}=8000 {\color{red}{\left(- t^{-1}\right)}}=8000 {\color{red}{\left(- \frac{1}{t}\right)}}$$

Portanto,

$$\int{\frac{8000}{t^{2}} d t} = - \frac{8000}{t}$$

Adicione a constante de integração:

$$\int{\frac{8000}{t^{2}} d t} = - \frac{8000}{t}+C$$

Resposta

$$$\int \frac{8000}{t^{2}}\, dt = - \frac{8000}{t} + C$$$A


Please try a new game Rotatly