Integral de $$$\frac{8000}{t^{2}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{8000}{t^{2}}\, dt$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=8000$$$ y $$$f{\left(t \right)} = \frac{1}{t^{2}}$$$:
$${\color{red}{\int{\frac{8000}{t^{2}} d t}}} = {\color{red}{\left(8000 \int{\frac{1}{t^{2}} d t}\right)}}$$
Aplica la regla de la potencia $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:
$$8000 {\color{red}{\int{\frac{1}{t^{2}} d t}}}=8000 {\color{red}{\int{t^{-2} d t}}}=8000 {\color{red}{\frac{t^{-2 + 1}}{-2 + 1}}}=8000 {\color{red}{\left(- t^{-1}\right)}}=8000 {\color{red}{\left(- \frac{1}{t}\right)}}$$
Por lo tanto,
$$\int{\frac{8000}{t^{2}} d t} = - \frac{8000}{t}$$
Añade la constante de integración:
$$\int{\frac{8000}{t^{2}} d t} = - \frac{8000}{t}+C$$
Respuesta
$$$\int \frac{8000}{t^{2}}\, dt = - \frac{8000}{t} + C$$$A