Integral de $$$\frac{x^{2}}{a^{2}}$$$ em relação a $$$x$$$

A calculadora encontrará a integral/primitiva de $$$\frac{x^{2}}{a^{2}}$$$ em relação a $$$x$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{x^{2}}{a^{2}}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{a^{2}}$$$ e $$$f{\left(x \right)} = x^{2}$$$:

$${\color{red}{\int{\frac{x^{2}}{a^{2}} d x}}} = {\color{red}{\frac{\int{x^{2} d x}}{a^{2}}}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:

$$\frac{{\color{red}{\int{x^{2} d x}}}}{a^{2}}=\frac{{\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{a^{2}}=\frac{{\color{red}{\left(\frac{x^{3}}{3}\right)}}}{a^{2}}$$

Portanto,

$$\int{\frac{x^{2}}{a^{2}} d x} = \frac{x^{3}}{3 a^{2}}$$

Adicione a constante de integração:

$$\int{\frac{x^{2}}{a^{2}} d x} = \frac{x^{3}}{3 a^{2}}+C$$

Resposta

$$$\int \frac{x^{2}}{a^{2}}\, dx = \frac{x^{3}}{3 a^{2}} + C$$$A


Please try a new game Rotatly