Integral de $$$- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x}}} = {\color{red}{\left(- \int{\frac{8767 x^{2}}{10000} d x} + \int{\frac{8767 \sin{\left(x \right)}}{10000} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{8767}{10000}$$$ e $$$f{\left(x \right)} = x^{2}$$$:
$$\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - {\color{red}{\int{\frac{8767 x^{2}}{10000} d x}}} = \int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - {\color{red}{\left(\frac{8767 \int{x^{2} d x}}{10000}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:
$$\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - \frac{8767 {\color{red}{\int{x^{2} d x}}}}{10000}=\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - \frac{8767 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{10000}=\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - \frac{8767 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{10000}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{8767}{10000}$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$- \frac{8767 x^{3}}{30000} + {\color{red}{\int{\frac{8767 \sin{\left(x \right)}}{10000} d x}}} = - \frac{8767 x^{3}}{30000} + {\color{red}{\left(\frac{8767 \int{\sin{\left(x \right)} d x}}{10000}\right)}}$$
A integral do seno é $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \frac{8767 x^{3}}{30000} + \frac{8767 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{10000} = - \frac{8767 x^{3}}{30000} + \frac{8767 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{10000}$$
Portanto,
$$\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x} = - \frac{8767 x^{3}}{30000} - \frac{8767 \cos{\left(x \right)}}{10000}$$
Simplifique:
$$\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x} = - \frac{8767 \left(x^{3} + 3 \cos{\left(x \right)}\right)}{30000}$$
Adicione a constante de integração:
$$\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x} = - \frac{8767 \left(x^{3} + 3 \cos{\left(x \right)}\right)}{30000}+C$$
Resposta
$$$\int \left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)\, dx = - \frac{8767 \left(x^{3} + 3 \cos{\left(x \right)}\right)}{30000} + C$$$A