Integral von $$$- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)\, dx$$$.
Lösung
Gliedweise integrieren:
$${\color{red}{\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x}}} = {\color{red}{\left(- \int{\frac{8767 x^{2}}{10000} d x} + \int{\frac{8767 \sin{\left(x \right)}}{10000} d x}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{8767}{10000}$$$ und $$$f{\left(x \right)} = x^{2}$$$ an:
$$\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - {\color{red}{\int{\frac{8767 x^{2}}{10000} d x}}} = \int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - {\color{red}{\left(\frac{8767 \int{x^{2} d x}}{10000}\right)}}$$
Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=2$$$ an:
$$\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - \frac{8767 {\color{red}{\int{x^{2} d x}}}}{10000}=\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - \frac{8767 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{10000}=\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - \frac{8767 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{10000}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{8767}{10000}$$$ und $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ an:
$$- \frac{8767 x^{3}}{30000} + {\color{red}{\int{\frac{8767 \sin{\left(x \right)}}{10000} d x}}} = - \frac{8767 x^{3}}{30000} + {\color{red}{\left(\frac{8767 \int{\sin{\left(x \right)} d x}}{10000}\right)}}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \frac{8767 x^{3}}{30000} + \frac{8767 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{10000} = - \frac{8767 x^{3}}{30000} + \frac{8767 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{10000}$$
Daher,
$$\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x} = - \frac{8767 x^{3}}{30000} - \frac{8767 \cos{\left(x \right)}}{10000}$$
Vereinfachen:
$$\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x} = - \frac{8767 \left(x^{3} + 3 \cos{\left(x \right)}\right)}{30000}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x} = - \frac{8767 \left(x^{3} + 3 \cos{\left(x \right)}\right)}{30000}+C$$
Antwort
$$$\int \left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)\, dx = - \frac{8767 \left(x^{3} + 3 \cos{\left(x \right)}\right)}{30000} + C$$$A