Ολοκλήρωμα του $$$- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x}}} = {\color{red}{\left(- \int{\frac{8767 x^{2}}{10000} d x} + \int{\frac{8767 \sin{\left(x \right)}}{10000} d x}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{8767}{10000}$$$ και $$$f{\left(x \right)} = x^{2}$$$:

$$\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - {\color{red}{\int{\frac{8767 x^{2}}{10000} d x}}} = \int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - {\color{red}{\left(\frac{8767 \int{x^{2} d x}}{10000}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - \frac{8767 {\color{red}{\int{x^{2} d x}}}}{10000}=\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - \frac{8767 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{10000}=\int{\frac{8767 \sin{\left(x \right)}}{10000} d x} - \frac{8767 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{10000}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{8767}{10000}$$$ και $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$- \frac{8767 x^{3}}{30000} + {\color{red}{\int{\frac{8767 \sin{\left(x \right)}}{10000} d x}}} = - \frac{8767 x^{3}}{30000} + {\color{red}{\left(\frac{8767 \int{\sin{\left(x \right)} d x}}{10000}\right)}}$$

Το ολοκλήρωμα του ημιτόνου είναι $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$- \frac{8767 x^{3}}{30000} + \frac{8767 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{10000} = - \frac{8767 x^{3}}{30000} + \frac{8767 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{10000}$$

Επομένως,

$$\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x} = - \frac{8767 x^{3}}{30000} - \frac{8767 \cos{\left(x \right)}}{10000}$$

Απλοποιήστε:

$$\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x} = - \frac{8767 \left(x^{3} + 3 \cos{\left(x \right)}\right)}{30000}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)d x} = - \frac{8767 \left(x^{3} + 3 \cos{\left(x \right)}\right)}{30000}+C$$

Απάντηση

$$$\int \left(- \frac{8767 x^{2}}{10000} + \frac{8767 \sin{\left(x \right)}}{10000}\right)\, dx = - \frac{8767 \left(x^{3} + 3 \cos{\left(x \right)}\right)}{30000} + C$$$A


Please try a new game Rotatly