Integral de $$$\frac{x^{2} + 1}{x^{2} - 1}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{x^{2} + 1}{x^{2} - 1}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{x^{2} + 1}{x^{2} - 1}\, dx$$$.

Solução

Como o grau do numerador não é menor que o grau do denominador, realize a divisão longa de polinômios (os passos podem ser vistos »):

$${\color{red}{\int{\frac{x^{2} + 1}{x^{2} - 1} d x}}} = {\color{red}{\int{\left(1 + \frac{2}{x^{2} - 1}\right)d x}}}$$

Integre termo a termo:

$${\color{red}{\int{\left(1 + \frac{2}{x^{2} - 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{2}{x^{2} - 1} d x}\right)}}$$

Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=1$$$:

$$\int{\frac{2}{x^{2} - 1} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{2}{x^{2} - 1} d x} + {\color{red}{x}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \frac{1}{x^{2} - 1}$$$:

$$x + {\color{red}{\int{\frac{2}{x^{2} - 1} d x}}} = x + {\color{red}{\left(2 \int{\frac{1}{x^{2} - 1} d x}\right)}}$$

Efetue a decomposição em frações parciais (os passos podem ser vistos »):

$$x + 2 {\color{red}{\int{\frac{1}{x^{2} - 1} d x}}} = x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$

Integre termo a termo:

$$x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}} = x + 2 {\color{red}{\left(\int{\frac{1}{2 \left(x - 1\right)} d x} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:

$$x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + 2 {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$

Seja $$$u=x - 1$$$.

Então $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.

Assim,

$$x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{x - 1} d x}}} = x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$

A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recorde que $$$u=x - 1$$$:

$$x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} = x + \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} - 2 \int{\frac{1}{2 \left(x + 1\right)} d x}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:

$$x + \ln{\left(\left|{x - 1}\right| \right)} - 2 {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = x + \ln{\left(\left|{x - 1}\right| \right)} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$

Seja $$$u=x + 1$$$.

Então $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.

Portanto,

$$x + \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\int{\frac{1}{x + 1} d x}}} = x + \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}}$$

A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x + \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = x + \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recorde que $$$u=x + 1$$$:

$$x + \ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x + \ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$

Portanto,

$$\int{\frac{x^{2} + 1}{x^{2} - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}$$

Adicione a constante de integração:

$$\int{\frac{x^{2} + 1}{x^{2} - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}+C$$

Resposta

$$$\int \frac{x^{2} + 1}{x^{2} - 1}\, dx = \left(x + \ln\left(\left|{x - 1}\right|\right) - \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly