Intégrale de $$$\frac{x^{2} + 1}{x^{2} - 1}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{x^{2} + 1}{x^{2} - 1}\, dx$$$.
Solution
Puisque le degré du numérateur n’est pas inférieur à celui du dénominateur, effectuez la division euclidienne des polynômes (voir les étapes »):
$${\color{red}{\int{\frac{x^{2} + 1}{x^{2} - 1} d x}}} = {\color{red}{\int{\left(1 + \frac{2}{x^{2} - 1}\right)d x}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(1 + \frac{2}{x^{2} - 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{2}{x^{2} - 1} d x}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=1$$$:
$$\int{\frac{2}{x^{2} - 1} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{2}{x^{2} - 1} d x} + {\color{red}{x}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2$$$ et $$$f{\left(x \right)} = \frac{1}{x^{2} - 1}$$$ :
$$x + {\color{red}{\int{\frac{2}{x^{2} - 1} d x}}} = x + {\color{red}{\left(2 \int{\frac{1}{x^{2} - 1} d x}\right)}}$$
Effectuer la décomposition en fractions partielles (les étapes peuvent être vues »):
$$x + 2 {\color{red}{\int{\frac{1}{x^{2} - 1} d x}}} = x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
Intégrez terme à terme:
$$x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}\right)d x}}} = x + 2 {\color{red}{\left(\int{\frac{1}{2 \left(x - 1\right)} d x} - \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \frac{1}{x - 1}$$$ :
$$x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + 2 {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$
Soit $$$u=x - 1$$$.
Alors $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Par conséquent,
$$x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{x - 1} d x}}} = x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = x - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=x - 1$$$ :
$$x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - 2 \int{\frac{1}{2 \left(x + 1\right)} d x} = x + \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} - 2 \int{\frac{1}{2 \left(x + 1\right)} d x}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \frac{1}{x + 1}$$$ :
$$x + \ln{\left(\left|{x - 1}\right| \right)} - 2 {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = x + \ln{\left(\left|{x - 1}\right| \right)} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$
Soit $$$u=x + 1$$$.
Alors $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Ainsi,
$$x + \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\int{\frac{1}{x + 1} d x}}} = x + \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$x + \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = x + \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=x + 1$$$ :
$$x + \ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x + \ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$
Par conséquent,
$$\int{\frac{x^{2} + 1}{x^{2} - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}$$
Ajouter la constante d'intégration :
$$\int{\frac{x^{2} + 1}{x^{2} - 1} d x} = x + \ln{\left(\left|{x - 1}\right| \right)} - \ln{\left(\left|{x + 1}\right| \right)}+C$$
Réponse
$$$\int \frac{x^{2} + 1}{x^{2} - 1}\, dx = \left(x + \ln\left(\left|{x - 1}\right|\right) - \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A