Integral de $$$\frac{t^{2}}{t^{2} - 2}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{t^{2}}{t^{2} - 2}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{t^{2}}{t^{2} - 2}\, dt$$$.

Solução

Reescreva e separe a fração:

$${\color{red}{\int{\frac{t^{2}}{t^{2} - 2} d t}}} = {\color{red}{\int{\left(1 + \frac{2}{t^{2} - 2}\right)d t}}}$$

Integre termo a termo:

$${\color{red}{\int{\left(1 + \frac{2}{t^{2} - 2}\right)d t}}} = {\color{red}{\left(\int{1 d t} + \int{\frac{2}{t^{2} - 2} d t}\right)}}$$

Aplique a regra da constante $$$\int c\, dt = c t$$$ usando $$$c=1$$$:

$$\int{\frac{2}{t^{2} - 2} d t} + {\color{red}{\int{1 d t}}} = \int{\frac{2}{t^{2} - 2} d t} + {\color{red}{t}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=2$$$ e $$$f{\left(t \right)} = \frac{1}{t^{2} - 2}$$$:

$$t + {\color{red}{\int{\frac{2}{t^{2} - 2} d t}}} = t + {\color{red}{\left(2 \int{\frac{1}{t^{2} - 2} d t}\right)}}$$

Efetue a decomposição em frações parciais (os passos podem ser vistos »):

$$t + 2 {\color{red}{\int{\frac{1}{t^{2} - 2} d t}}} = t + 2 {\color{red}{\int{\left(- \frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} + \frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)}\right)d t}}}$$

Integre termo a termo:

$$t + 2 {\color{red}{\int{\left(- \frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} + \frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)}\right)d t}}} = t + 2 {\color{red}{\left(\int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \int{\frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} d t}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=\frac{\sqrt{2}}{4}$$$ e $$$f{\left(t \right)} = \frac{1}{t + \sqrt{2}}$$$:

$$t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - 2 {\color{red}{\int{\frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} d t}}} = t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - 2 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{t + \sqrt{2}} d t}}{4}\right)}}$$

Seja $$$u=t + \sqrt{2}$$$.

Então $$$du=\left(t + \sqrt{2}\right)^{\prime }dt = 1 dt$$$ (veja os passos »), e obtemos $$$dt = du$$$.

Portanto,

$$t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{t + \sqrt{2}} d t}}}}{2} = t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2} = t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Recorde que $$$u=t + \sqrt{2}$$$:

$$t - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} = t - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(t + \sqrt{2}\right)}}}\right| \right)}}{2} + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=\frac{\sqrt{2}}{4}$$$ e $$$f{\left(t \right)} = \frac{1}{t - \sqrt{2}}$$$:

$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + 2 {\color{red}{\int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t}}} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + 2 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{t - \sqrt{2}} d t}}{4}\right)}}$$

Seja $$$u=t - \sqrt{2}$$$.

Então $$$du=\left(t - \sqrt{2}\right)^{\prime }dt = 1 dt$$$ (veja os passos »), e obtemos $$$dt = du$$$.

A integral pode ser reescrita como

$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{t - \sqrt{2}} d t}}}}{2} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Recorde que $$$u=t - \sqrt{2}$$$:

$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(t - \sqrt{2}\right)}}}\right| \right)}}{2}$$

Portanto,

$$\int{\frac{t^{2}}{t^{2} - 2} d t} = t + \frac{\sqrt{2} \ln{\left(\left|{t - \sqrt{2}}\right| \right)}}{2} - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2}$$

Adicione a constante de integração:

$$\int{\frac{t^{2}}{t^{2} - 2} d t} = t + \frac{\sqrt{2} \ln{\left(\left|{t - \sqrt{2}}\right| \right)}}{2} - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2}+C$$

Resposta

$$$\int \frac{t^{2}}{t^{2} - 2}\, dt = \left(t + \frac{\sqrt{2} \ln\left(\left|{t - \sqrt{2}}\right|\right)}{2} - \frac{\sqrt{2} \ln\left(\left|{t + \sqrt{2}}\right|\right)}{2}\right) + C$$$A


Please try a new game Rotatly