$$$\frac{t^{2}}{t^{2} - 2}$$$의 적분
사용자 입력
$$$\int \frac{t^{2}}{t^{2} - 2}\, dt$$$을(를) 구하시오.
풀이
분수식을 다시 쓰고 분리하세요:
$${\color{red}{\int{\frac{t^{2}}{t^{2} - 2} d t}}} = {\color{red}{\int{\left(1 + \frac{2}{t^{2} - 2}\right)d t}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(1 + \frac{2}{t^{2} - 2}\right)d t}}} = {\color{red}{\left(\int{1 d t} + \int{\frac{2}{t^{2} - 2} d t}\right)}}$$
상수 법칙 $$$\int c\, dt = c t$$$을 $$$c=1$$$에 적용하십시오:
$$\int{\frac{2}{t^{2} - 2} d t} + {\color{red}{\int{1 d t}}} = \int{\frac{2}{t^{2} - 2} d t} + {\color{red}{t}}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=2$$$와 $$$f{\left(t \right)} = \frac{1}{t^{2} - 2}$$$에 적용하세요:
$$t + {\color{red}{\int{\frac{2}{t^{2} - 2} d t}}} = t + {\color{red}{\left(2 \int{\frac{1}{t^{2} - 2} d t}\right)}}$$
부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):
$$t + 2 {\color{red}{\int{\frac{1}{t^{2} - 2} d t}}} = t + 2 {\color{red}{\int{\left(- \frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} + \frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)}\right)d t}}}$$
각 항별로 적분하십시오:
$$t + 2 {\color{red}{\int{\left(- \frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} + \frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)}\right)d t}}} = t + 2 {\color{red}{\left(\int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \int{\frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} d t}\right)}}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{\sqrt{2}}{4}$$$와 $$$f{\left(t \right)} = \frac{1}{t + \sqrt{2}}$$$에 적용하세요:
$$t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - 2 {\color{red}{\int{\frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} d t}}} = t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - 2 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{t + \sqrt{2}} d t}}{4}\right)}}$$
$$$u=t + \sqrt{2}$$$라 하자.
그러면 $$$du=\left(t + \sqrt{2}\right)^{\prime }dt = 1 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = du$$$임을 얻습니다.
따라서,
$$t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{t + \sqrt{2}} d t}}}}{2} = t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2} = t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
다음 $$$u=t + \sqrt{2}$$$을 기억하라:
$$t - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} = t - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(t + \sqrt{2}\right)}}}\right| \right)}}{2} + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{\sqrt{2}}{4}$$$와 $$$f{\left(t \right)} = \frac{1}{t - \sqrt{2}}$$$에 적용하세요:
$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + 2 {\color{red}{\int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t}}} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + 2 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{t - \sqrt{2}} d t}}{4}\right)}}$$
$$$u=t - \sqrt{2}$$$라 하자.
그러면 $$$du=\left(t - \sqrt{2}\right)^{\prime }dt = 1 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{t - \sqrt{2}} d t}}}}{2} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
다음 $$$u=t - \sqrt{2}$$$을 기억하라:
$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(t - \sqrt{2}\right)}}}\right| \right)}}{2}$$
따라서,
$$\int{\frac{t^{2}}{t^{2} - 2} d t} = t + \frac{\sqrt{2} \ln{\left(\left|{t - \sqrt{2}}\right| \right)}}{2} - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2}$$
적분 상수를 추가하세요:
$$\int{\frac{t^{2}}{t^{2} - 2} d t} = t + \frac{\sqrt{2} \ln{\left(\left|{t - \sqrt{2}}\right| \right)}}{2} - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2}+C$$
정답
$$$\int \frac{t^{2}}{t^{2} - 2}\, dt = \left(t + \frac{\sqrt{2} \ln\left(\left|{t - \sqrt{2}}\right|\right)}{2} - \frac{\sqrt{2} \ln\left(\left|{t + \sqrt{2}}\right|\right)}{2}\right) + C$$$A