Ολοκλήρωμα του $$$\frac{t^{2}}{t^{2} - 2}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{t^{2}}{t^{2} - 2}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{t^{2}}{t^{2} - 2}\, dt$$$.

Λύση

Επαναγράψτε και διασπάστε το κλάσμα:

$${\color{red}{\int{\frac{t^{2}}{t^{2} - 2} d t}}} = {\color{red}{\int{\left(1 + \frac{2}{t^{2} - 2}\right)d t}}}$$

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(1 + \frac{2}{t^{2} - 2}\right)d t}}} = {\color{red}{\left(\int{1 d t} + \int{\frac{2}{t^{2} - 2} d t}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dt = c t$$$ με $$$c=1$$$:

$$\int{\frac{2}{t^{2} - 2} d t} + {\color{red}{\int{1 d t}}} = \int{\frac{2}{t^{2} - 2} d t} + {\color{red}{t}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=2$$$ και $$$f{\left(t \right)} = \frac{1}{t^{2} - 2}$$$:

$$t + {\color{red}{\int{\frac{2}{t^{2} - 2} d t}}} = t + {\color{red}{\left(2 \int{\frac{1}{t^{2} - 2} d t}\right)}}$$

Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):

$$t + 2 {\color{red}{\int{\frac{1}{t^{2} - 2} d t}}} = t + 2 {\color{red}{\int{\left(- \frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} + \frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)}\right)d t}}}$$

Ολοκληρώστε όρο προς όρο:

$$t + 2 {\color{red}{\int{\left(- \frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} + \frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)}\right)d t}}} = t + 2 {\color{red}{\left(\int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \int{\frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} d t}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=\frac{\sqrt{2}}{4}$$$ και $$$f{\left(t \right)} = \frac{1}{t + \sqrt{2}}$$$:

$$t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - 2 {\color{red}{\int{\frac{\sqrt{2}}{4 \left(t + \sqrt{2}\right)} d t}}} = t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - 2 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{t + \sqrt{2}} d t}}{4}\right)}}$$

Έστω $$$u=t + \sqrt{2}$$$.

Τότε $$$du=\left(t + \sqrt{2}\right)^{\prime }dt = 1 dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = du$$$.

Επομένως,

$$t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{t + \sqrt{2}} d t}}}}{2} = t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2} = t + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} - \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Θυμηθείτε ότι $$$u=t + \sqrt{2}$$$:

$$t - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t} = t - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(t + \sqrt{2}\right)}}}\right| \right)}}{2} + 2 \int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=\frac{\sqrt{2}}{4}$$$ και $$$f{\left(t \right)} = \frac{1}{t - \sqrt{2}}$$$:

$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + 2 {\color{red}{\int{\frac{\sqrt{2}}{4 \left(t - \sqrt{2}\right)} d t}}} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + 2 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{t - \sqrt{2}} d t}}{4}\right)}}$$

Έστω $$$u=t - \sqrt{2}$$$.

Τότε $$$du=\left(t - \sqrt{2}\right)^{\prime }dt = 1 dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = du$$$.

Επομένως,

$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{t - \sqrt{2}} d t}}}}{2} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{u} d u}}}}{2} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Θυμηθείτε ότι $$$u=t - \sqrt{2}$$$:

$$t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = t - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(t - \sqrt{2}\right)}}}\right| \right)}}{2}$$

Επομένως,

$$\int{\frac{t^{2}}{t^{2} - 2} d t} = t + \frac{\sqrt{2} \ln{\left(\left|{t - \sqrt{2}}\right| \right)}}{2} - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{t^{2}}{t^{2} - 2} d t} = t + \frac{\sqrt{2} \ln{\left(\left|{t - \sqrt{2}}\right| \right)}}{2} - \frac{\sqrt{2} \ln{\left(\left|{t + \sqrt{2}}\right| \right)}}{2}+C$$

Απάντηση

$$$\int \frac{t^{2}}{t^{2} - 2}\, dt = \left(t + \frac{\sqrt{2} \ln\left(\left|{t - \sqrt{2}}\right|\right)}{2} - \frac{\sqrt{2} \ln\left(\left|{t + \sqrt{2}}\right|\right)}{2}\right) + C$$$A


Please try a new game Rotatly