Integral de $$$e^{x} - e^{- 2 x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(e^{x} - e^{- 2 x}\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(e^{x} - e^{- 2 x}\right)d x}}} = {\color{red}{\left(- \int{e^{- 2 x} d x} + \int{e^{x} d x}\right)}}$$
Seja $$$u=- 2 x$$$.
Então $$$du=\left(- 2 x\right)^{\prime }dx = - 2 dx$$$ (veja os passos »), e obtemos $$$dx = - \frac{du}{2}$$$.
Assim,
$$\int{e^{x} d x} - {\color{red}{\int{e^{- 2 x} d x}}} = \int{e^{x} d x} - {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=- \frac{1}{2}$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$$\int{e^{x} d x} - {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}} = \int{e^{x} d x} - {\color{red}{\left(- \frac{\int{e^{u} d u}}{2}\right)}}$$
A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:
$$\int{e^{x} d x} + \frac{{\color{red}{\int{e^{u} d u}}}}{2} = \int{e^{x} d x} + \frac{{\color{red}{e^{u}}}}{2}$$
Recorde que $$$u=- 2 x$$$:
$$\int{e^{x} d x} + \frac{e^{{\color{red}{u}}}}{2} = \int{e^{x} d x} + \frac{e^{{\color{red}{\left(- 2 x\right)}}}}{2}$$
A integral da função exponencial é $$$\int{e^{x} d x} = e^{x}$$$:
$${\color{red}{\int{e^{x} d x}}} + \frac{e^{- 2 x}}{2} = {\color{red}{e^{x}}} + \frac{e^{- 2 x}}{2}$$
Portanto,
$$\int{\left(e^{x} - e^{- 2 x}\right)d x} = e^{x} + \frac{e^{- 2 x}}{2}$$
Adicione a constante de integração:
$$\int{\left(e^{x} - e^{- 2 x}\right)d x} = e^{x} + \frac{e^{- 2 x}}{2}+C$$
Resposta
$$$\int \left(e^{x} - e^{- 2 x}\right)\, dx = \left(e^{x} + \frac{e^{- 2 x}}{2}\right) + C$$$A