Integral dari $$$e^{x} - e^{- 2 x}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$e^{x} - e^{- 2 x}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(e^{x} - e^{- 2 x}\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(e^{x} - e^{- 2 x}\right)d x}}} = {\color{red}{\left(- \int{e^{- 2 x} d x} + \int{e^{x} d x}\right)}}$$

Misalkan $$$u=- 2 x$$$.

Kemudian $$$du=\left(- 2 x\right)^{\prime }dx = - 2 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = - \frac{du}{2}$$$.

Oleh karena itu,

$$\int{e^{x} d x} - {\color{red}{\int{e^{- 2 x} d x}}} = \int{e^{x} d x} - {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=- \frac{1}{2}$$$ dan $$$f{\left(u \right)} = e^{u}$$$:

$$\int{e^{x} d x} - {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}} = \int{e^{x} d x} - {\color{red}{\left(- \frac{\int{e^{u} d u}}{2}\right)}}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:

$$\int{e^{x} d x} + \frac{{\color{red}{\int{e^{u} d u}}}}{2} = \int{e^{x} d x} + \frac{{\color{red}{e^{u}}}}{2}$$

Ingat bahwa $$$u=- 2 x$$$:

$$\int{e^{x} d x} + \frac{e^{{\color{red}{u}}}}{2} = \int{e^{x} d x} + \frac{e^{{\color{red}{\left(- 2 x\right)}}}}{2}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{x} d x} = e^{x}$$$:

$${\color{red}{\int{e^{x} d x}}} + \frac{e^{- 2 x}}{2} = {\color{red}{e^{x}}} + \frac{e^{- 2 x}}{2}$$

Oleh karena itu,

$$\int{\left(e^{x} - e^{- 2 x}\right)d x} = e^{x} + \frac{e^{- 2 x}}{2}$$

Tambahkan konstanta integrasi:

$$\int{\left(e^{x} - e^{- 2 x}\right)d x} = e^{x} + \frac{e^{- 2 x}}{2}+C$$

Jawaban

$$$\int \left(e^{x} - e^{- 2 x}\right)\, dx = \left(e^{x} + \frac{e^{- 2 x}}{2}\right) + C$$$A


Please try a new game Rotatly