$$$e^{x} - e^{- 2 x}$$$의 적분
사용자 입력
$$$\int \left(e^{x} - e^{- 2 x}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(e^{x} - e^{- 2 x}\right)d x}}} = {\color{red}{\left(- \int{e^{- 2 x} d x} + \int{e^{x} d x}\right)}}$$
$$$u=- 2 x$$$라 하자.
그러면 $$$du=\left(- 2 x\right)^{\prime }dx = - 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = - \frac{du}{2}$$$임을 얻습니다.
따라서,
$$\int{e^{x} d x} - {\color{red}{\int{e^{- 2 x} d x}}} = \int{e^{x} d x} - {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=- \frac{1}{2}$$$와 $$$f{\left(u \right)} = e^{u}$$$에 적용하세요:
$$\int{e^{x} d x} - {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}} = \int{e^{x} d x} - {\color{red}{\left(- \frac{\int{e^{u} d u}}{2}\right)}}$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$\int{e^{x} d x} + \frac{{\color{red}{\int{e^{u} d u}}}}{2} = \int{e^{x} d x} + \frac{{\color{red}{e^{u}}}}{2}$$
다음 $$$u=- 2 x$$$을 기억하라:
$$\int{e^{x} d x} + \frac{e^{{\color{red}{u}}}}{2} = \int{e^{x} d x} + \frac{e^{{\color{red}{\left(- 2 x\right)}}}}{2}$$
지수 함수의 적분은 $$$\int{e^{x} d x} = e^{x}$$$입니다:
$${\color{red}{\int{e^{x} d x}}} + \frac{e^{- 2 x}}{2} = {\color{red}{e^{x}}} + \frac{e^{- 2 x}}{2}$$
따라서,
$$\int{\left(e^{x} - e^{- 2 x}\right)d x} = e^{x} + \frac{e^{- 2 x}}{2}$$
적분 상수를 추가하세요:
$$\int{\left(e^{x} - e^{- 2 x}\right)d x} = e^{x} + \frac{e^{- 2 x}}{2}+C$$
정답
$$$\int \left(e^{x} - e^{- 2 x}\right)\, dx = \left(e^{x} + \frac{e^{- 2 x}}{2}\right) + C$$$A