Integral de $$$\frac{5 x^{6} + 5}{x^{2} + 1}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{5 x^{6} + 5}{x^{2} + 1}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{5 x^{6} + 5}{x^{2} + 1}\, dx$$$.

Solução

Simplifique o integrando:

$${\color{red}{\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x}}} = {\color{red}{\int{\left(5 x^{4} - 5 x^{2} + 5\right)d x}}}$$

Integre termo a termo:

$${\color{red}{\int{\left(5 x^{4} - 5 x^{2} + 5\right)d x}}} = {\color{red}{\left(\int{5 d x} - \int{5 x^{2} d x} + \int{5 x^{4} d x}\right)}}$$

Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=5$$$:

$$- \int{5 x^{2} d x} + \int{5 x^{4} d x} + {\color{red}{\int{5 d x}}} = - \int{5 x^{2} d x} + \int{5 x^{4} d x} + {\color{red}{\left(5 x\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=5$$$ e $$$f{\left(x \right)} = x^{2}$$$:

$$5 x + \int{5 x^{4} d x} - {\color{red}{\int{5 x^{2} d x}}} = 5 x + \int{5 x^{4} d x} - {\color{red}{\left(5 \int{x^{2} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:

$$5 x + \int{5 x^{4} d x} - 5 {\color{red}{\int{x^{2} d x}}}=5 x + \int{5 x^{4} d x} - 5 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=5 x + \int{5 x^{4} d x} - 5 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=5$$$ e $$$f{\left(x \right)} = x^{4}$$$:

$$- \frac{5 x^{3}}{3} + 5 x + {\color{red}{\int{5 x^{4} d x}}} = - \frac{5 x^{3}}{3} + 5 x + {\color{red}{\left(5 \int{x^{4} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=4$$$:

$$- \frac{5 x^{3}}{3} + 5 x + 5 {\color{red}{\int{x^{4} d x}}}=- \frac{5 x^{3}}{3} + 5 x + 5 {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=- \frac{5 x^{3}}{3} + 5 x + 5 {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$

Portanto,

$$\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x} = x^{5} - \frac{5 x^{3}}{3} + 5 x$$

Simplifique:

$$\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x} = x \left(x^{4} - \frac{5 x^{2}}{3} + 5\right)$$

Adicione a constante de integração:

$$\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x} = x \left(x^{4} - \frac{5 x^{2}}{3} + 5\right)+C$$

Resposta

$$$\int \frac{5 x^{6} + 5}{x^{2} + 1}\, dx = x \left(x^{4} - \frac{5 x^{2}}{3} + 5\right) + C$$$A


Please try a new game Rotatly