$$$\frac{5 x^{6} + 5}{x^{2} + 1}$$$ 的积分

该计算器将求出$$$\frac{5 x^{6} + 5}{x^{2} + 1}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{5 x^{6} + 5}{x^{2} + 1}\, dx$$$

解答

化简被积函数:

$${\color{red}{\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x}}} = {\color{red}{\int{\left(5 x^{4} - 5 x^{2} + 5\right)d x}}}$$

逐项积分:

$${\color{red}{\int{\left(5 x^{4} - 5 x^{2} + 5\right)d x}}} = {\color{red}{\left(\int{5 d x} - \int{5 x^{2} d x} + \int{5 x^{4} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=5$$$

$$- \int{5 x^{2} d x} + \int{5 x^{4} d x} + {\color{red}{\int{5 d x}}} = - \int{5 x^{2} d x} + \int{5 x^{4} d x} + {\color{red}{\left(5 x\right)}}$$

$$$c=5$$$$$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$5 x + \int{5 x^{4} d x} - {\color{red}{\int{5 x^{2} d x}}} = 5 x + \int{5 x^{4} d x} - {\color{red}{\left(5 \int{x^{2} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$5 x + \int{5 x^{4} d x} - 5 {\color{red}{\int{x^{2} d x}}}=5 x + \int{5 x^{4} d x} - 5 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=5 x + \int{5 x^{4} d x} - 5 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

$$$c=5$$$$$$f{\left(x \right)} = x^{4}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{5 x^{3}}{3} + 5 x + {\color{red}{\int{5 x^{4} d x}}} = - \frac{5 x^{3}}{3} + 5 x + {\color{red}{\left(5 \int{x^{4} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=4$$$

$$- \frac{5 x^{3}}{3} + 5 x + 5 {\color{red}{\int{x^{4} d x}}}=- \frac{5 x^{3}}{3} + 5 x + 5 {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=- \frac{5 x^{3}}{3} + 5 x + 5 {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$

因此,

$$\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x} = x^{5} - \frac{5 x^{3}}{3} + 5 x$$

化简:

$$\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x} = x \left(x^{4} - \frac{5 x^{2}}{3} + 5\right)$$

加上积分常数:

$$\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x} = x \left(x^{4} - \frac{5 x^{2}}{3} + 5\right)+C$$

答案

$$$\int \frac{5 x^{6} + 5}{x^{2} + 1}\, dx = x \left(x^{4} - \frac{5 x^{2}}{3} + 5\right) + C$$$A


Please try a new game Rotatly