Integral of $$$\frac{5 x^{6} + 5}{x^{2} + 1}$$$

The calculator will find the integral/antiderivative of $$$\frac{5 x^{6} + 5}{x^{2} + 1}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{5 x^{6} + 5}{x^{2} + 1}\, dx$$$.

Solution

Simplify the integrand:

$${\color{red}{\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x}}} = {\color{red}{\int{\left(5 x^{4} - 5 x^{2} + 5\right)d x}}}$$

Integrate term by term:

$${\color{red}{\int{\left(5 x^{4} - 5 x^{2} + 5\right)d x}}} = {\color{red}{\left(\int{5 d x} - \int{5 x^{2} d x} + \int{5 x^{4} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=5$$$:

$$- \int{5 x^{2} d x} + \int{5 x^{4} d x} + {\color{red}{\int{5 d x}}} = - \int{5 x^{2} d x} + \int{5 x^{4} d x} + {\color{red}{\left(5 x\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=5$$$ and $$$f{\left(x \right)} = x^{2}$$$:

$$5 x + \int{5 x^{4} d x} - {\color{red}{\int{5 x^{2} d x}}} = 5 x + \int{5 x^{4} d x} - {\color{red}{\left(5 \int{x^{2} d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$5 x + \int{5 x^{4} d x} - 5 {\color{red}{\int{x^{2} d x}}}=5 x + \int{5 x^{4} d x} - 5 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=5 x + \int{5 x^{4} d x} - 5 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=5$$$ and $$$f{\left(x \right)} = x^{4}$$$:

$$- \frac{5 x^{3}}{3} + 5 x + {\color{red}{\int{5 x^{4} d x}}} = - \frac{5 x^{3}}{3} + 5 x + {\color{red}{\left(5 \int{x^{4} d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=4$$$:

$$- \frac{5 x^{3}}{3} + 5 x + 5 {\color{red}{\int{x^{4} d x}}}=- \frac{5 x^{3}}{3} + 5 x + 5 {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=- \frac{5 x^{3}}{3} + 5 x + 5 {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$

Therefore,

$$\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x} = x^{5} - \frac{5 x^{3}}{3} + 5 x$$

Simplify:

$$\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x} = x \left(x^{4} - \frac{5 x^{2}}{3} + 5\right)$$

Add the constant of integration:

$$\int{\frac{5 x^{6} + 5}{x^{2} + 1} d x} = x \left(x^{4} - \frac{5 x^{2}}{3} + 5\right)+C$$

Answer

$$$\int \frac{5 x^{6} + 5}{x^{2} + 1}\, dx = x \left(x^{4} - \frac{5 x^{2}}{3} + 5\right) + C$$$A


Please try a new game Rotatly