Derivada de $$$\sqrt{x - 1}$$$
Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos
Sua entrada
Encontre $$$\frac{d}{dx} \left(\sqrt{x - 1}\right)$$$.
Solução
A função $$$\sqrt{x - 1}$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \sqrt{u}$$$ e $$$g{\left(x \right)} = x - 1$$$.
Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x - 1}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(x - 1\right)\right)}$$Aplique a regra da potência $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ com $$$n = \frac{1}{2}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(x - 1\right) = {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(x - 1\right)$$Retorne à variável original:
$$\frac{\frac{d}{dx} \left(x - 1\right)}{2 \sqrt{{\color{red}\left(u\right)}}} = \frac{\frac{d}{dx} \left(x - 1\right)}{2 \sqrt{{\color{red}\left(x - 1\right)}}}$$A derivada de uma soma/diferença é a soma/diferença das derivadas:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x - 1\right)\right)}}{2 \sqrt{x - 1}} = \frac{{\color{red}\left(\frac{d}{dx} \left(x\right) - \frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{x - 1}}$$A derivada de uma constante é $$$0$$$:
$$\frac{- {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x\right)}{2 \sqrt{x - 1}} = \frac{- {\color{red}\left(0\right)} + \frac{d}{dx} \left(x\right)}{2 \sqrt{x - 1}}$$Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 1$$$, em outras palavras, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2 \sqrt{x - 1}} = \frac{{\color{red}\left(1\right)}}{2 \sqrt{x - 1}}$$Logo, $$$\frac{d}{dx} \left(\sqrt{x - 1}\right) = \frac{1}{2 \sqrt{x - 1}}$$$.
Resposta
$$$\frac{d}{dx} \left(\sqrt{x - 1}\right) = \frac{1}{2 \sqrt{x - 1}}$$$A