Derivada de $$$\frac{\sqrt{3} \sinh{\left(v \right)}}{2}$$$
Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos
Sua entrada
Encontre $$$\frac{d}{dv} \left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right)$$$.
Solução
Aplique a regra da constante multiplicativa $$$\frac{d}{dv} \left(c f{\left(v \right)}\right) = c \frac{d}{dv} \left(f{\left(v \right)}\right)$$$ com $$$c = \frac{\sqrt{3}}{2}$$$ e $$$f{\left(v \right)} = \sinh{\left(v \right)}$$$:
$${\color{red}\left(\frac{d}{dv} \left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right)\right)} = {\color{red}\left(\frac{\sqrt{3}}{2} \frac{d}{dv} \left(\sinh{\left(v \right)}\right)\right)}$$A derivada do seno hiperbólico é $$$\frac{d}{dv} \left(\sinh{\left(v \right)}\right) = \cosh{\left(v \right)}$$$:
$$\frac{\sqrt{3} {\color{red}\left(\frac{d}{dv} \left(\sinh{\left(v \right)}\right)\right)}}{2} = \frac{\sqrt{3} {\color{red}\left(\cosh{\left(v \right)}\right)}}{2}$$Logo, $$$\frac{d}{dv} \left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right) = \frac{\sqrt{3} \cosh{\left(v \right)}}{2}$$$.
Resposta
$$$\frac{d}{dv} \left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right) = \frac{\sqrt{3} \cosh{\left(v \right)}}{2}$$$A